Zum Hauptinhalt springen

Identifying attacks in the Russia-Ukraine conflict using seismic array data.

Dando, BDE ; Goertz-Allmann, BP ; et al.
In: Nature, Jg. 621 (2023-09-01), Heft 7980, S. 767-772
academicJournal

Titel:
Identifying attacks in the Russia-Ukraine conflict using seismic array data.
Autor/in / Beteiligte Person: Dando, BDE ; Goertz-Allmann, BP ; Brissaud, Q ; Köhler, A ; Schweitzer, J ; Kværna, T ; Liashchuk, A
Zeitschrift: Nature, Jg. 621 (2023-09-01), Heft 7980, S. 767-772
Veröffentlichung: Basingstoke : Nature Publishing Group ; <i>Original Publication</i>: London, Macmillan Journals ltd., 2023
Medientyp: academicJournal
ISSN: 1476-4687 (electronic)
DOI: 10.1038/s41586-023-06416-7
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Nature] 2023 Sep; Vol. 621 (7980), pp. 767-772. <i>Date of Electronic Publication: </i>2023 Aug 30.
  • References: Carmichael, J. D. et al. Persistent, “mysterious” seismoacoustic signals reported in Oklahoma state during 2019. Bull. Seismol. Soc. Am. 112, 553–574 (2021). (PMID: 10.1785/0120210145) ; Pilger, C. et al. Yield estimation of the 2020 Beirut explosion using open access waveform and remote sensing data. Sci. Rep. 11, 14144 (2021). (PMID: 10.1038/s41598-021-93690-y342390158266808) ; Gibbons, S. J., Pabian, F., Näsholm, S. P., Kværna, T. & Mykkeltveit, S. Accurate relative location estimates for the North Korean nuclear tests using empirical slowness corrections. Geophys. J. Int. 208, 101–117 (2017). (PMID: 10.1093/gji/ggw379) ; Ringdal, F., Mykkeltveit, S. & Kværna, T. NORSAR and the Nuclear Test Ban (NORSAR, 2022). ; Baraniuk, C. How access to satellite images shifts the view of war. BBC News (22 March 2022); https://www.bbc.com/news/business-60762772 . ; Gendzwill, D. Locating cannons by sound ranging in World War I. Lead. Edge 26, 27–29 (2007). (PMID: 10.1190/1.2431826) ; Keppner, G. Ludger Mintrop. Lead. Edge 10, 21–28 (1991). (PMID: 10.1190/1.1436838) ; Costley, R. D. Battlefield acoustics in the First World War: artillery location. Acoust. Today 16, 31–39 (2020). (PMID: 10.1121/AT.2020.16.2.31) ; Dagallier, A. et al. Long-range acoustic localization of artillery shots using distributed synchronous acoustic sensors. J. Acoust. Soc. Am. 146, 4860–4872 (2019). (PMID: 10.1121/1.513892731893685) ; Aleqabi, G. I., Wysession, M. E. & Ghalib, H. A. A. Characterization of seismic sources from military operations in urban terrain (MOUT): examples from Baghdad. Bull. Seismol. Soc. Am. 106, 23–41 (2015). (PMID: 10.1785/0120140187) ; International Registry of Seismograph Stations (International Seismological Centre, 2023); https://doi.org/10.31905/EL3FQQ40 . ; Schweitzer, J. et al. in New Manual of Seismological Observatory Practice 2 (NMSOP-2) (ed. Bormann, P.) 1–80 (Deutsche GeoForschungsZentrum GFZ, 2012). ; Winder, T. et al. QuakeMigrate: A Modular, Open-Source Python Package for Automatic Earthquake Detection and Location (ESS Open Archive, 2021); https://doi.org/10.1002/essoar.10505850.1 . ; Kao, H. & Shan, S.-J. The source-scanning algorithm: mapping the distribution of seismic sources in time and space. Geophys. J. Int. 157, 589–594 (2004). (PMID: 10.1111/j.1365-246X.2004.02276.x) ; Langet, N., Maggi, A., Michelini, A. & Brenguier, F. Continuous kurtosis‐based migration for seismic event detection and location, with application to Piton de la Fournaise Volcano, La Réunion. Bull. Seismol. Soc. Am. 104, 229–246 (2014). (PMID: 10.1785/0120130107) ; Chambers, K., Dando, B. D. E., Jones, G. A., Velasco, R. & Wilson, S. A. Moment tensor migration imaging. Geophys. Prospect. 62, 879–896 (2014). (PMID: 10.1111/1365-2478.12108) ; Brissaud, Q., Kværna, T., Iranpour, K., Kaschwich, T. & Dyrdal, I. Detection and properties of local artillery infrasound. In CTBT: Science and Technology Conference 2021 (SnT2021) P1.1-464 (2021). ; Anderson, T. S. Seismic augmentation of acoustic monitoring of mortar fire. Proc. SPIE 6736, 67360I (2007). (PMID: 10.1117/12.738131) ; Ukraine Conflict Updates (Institute for the Study of War, 2022); https://www.understandingwar.org/backgrounder/ukraine-conflict-updates . ; Ottemöller, L. & Evers, L. G. Seismo-acoustic analysis of the Buncefield oil depot explosion in the UK, 2005 December 11. Geophys. J. Int. 172, 1123–1134 (2008). (PMID: 10.1111/j.1365-246X.2007.03701.x) ; Averbuch, G., Ronac-Giannone, M., Arrowsmith, S. & Anderson, J. Evidence for short temporal atmospheric variations observed by infrasonic signals: 1. The troposphere. Earth Space Sci. 9, e2021EA002036 (2022). (PMID: 10.1029/2021EA002036) ; Adler, N. Inside Ukraine’s war crimes investigations. Al Jazeera (21 June 2022); https://www.aljazeera.com/features/2022/6/21/inside-ukraine-war-crimes-investigations . ; Koper, K. D., Wallace, T. C., Reinke, R. E. & Leverette, J. A. Empirical scaling laws for truck bomb explosions based on seismic and acoustic data. Bull. Seismol. Soc. Am. 92, 527–542 (2002). (PMID: 10.1785/0120000242) ; Pasyanos, M. E., Walter, W. R. & Mayeda, K. M. Exploiting regional amplitude envelopes: a case study for earthquakes and explosions in the Korean Peninsula. Bull. Seismol. Soc. Am. 102, 1938–1948 (2012). (PMID: 10.1785/0120120012) ; Ford, S. R. et al. Partitioning of seismoacoustic energy and estimation of yield and height-of-burst/depth-of-burial for near-surface explosions. Bull. Seismol. Soc. Am. 104, 608–623 (2014). (PMID: 10.1785/0120130130) ; Kim, K. & Pasyanos, M. E. Seismoacoustic explosion yield and depth estimation: insights from the Large Surface Explosion Coupling Experiment. Bull. Seismol. Soc. Am. https://doi.org/10.1785/0120220214 (2023). ; Ringdal, F., Marshall, P. D. & Alewine, R. W. Seismic yield determination of Soviet underground nuclear explosions at the Shagan River test site. Geophys. J. Int. 109, 65–77 (1992). (PMID: 10.1111/j.1365-246X.1992.tb00079.x) ; Murphy, J. R. in Monitoring a Comprehensive Test Ban Treaty (eds Husebye, E. S. & Dainty, A. M.) 225–245 (Springer, 1996). ; Bowers, D., Marshall, P. D. & Douglas, A. The level of deterrence provided by data from the SPITS seismometer array to possible violations of the Comprehensive Test Ban in the Novaya Zemlya region. Geophys. J. Int. 146, 425–438 (2001). (PMID: 10.1046/j.1365-246x.2001.01462.x) ; Booth, D. C. The relationship between seismic local magnitude ML and charge weight for UK explosions. NERC Open Research Archive https://nora.nerc.ac.uk/id/eprint/8570 (2009). ; Evans, R. & Seddon, B. Explosive Ordnance Guide for Ukraine: Second Edition (GICHD, 2022); https://www.gichd.org/fileadmin/uploads/gichd/Publications/GICHD_Ukraine_Guide_2022_Second_Edition_web.pdf . ; Hardy, J. What explosive weapons are the Russians using in Ukraine? Action on Armed Violence (14 March 2022); https://aoav.org.uk/2022/russias-arsenal-of-explosive-weapons-in-ukraine/ . ; Douglas, C. D. Blast Operational Overpressure Model (BOOM): An Airblast Prediction Method Technical Report AFWL-TR-85-150 (Defense Technical Information Center, 1987). ; Lomax, A., Michelini, A. & Curtis, A. in Encyclopedia of Complexity and Systems Science (ed. Meyers, R.) 1–33 (Springer, 2009). ; Laske, G., Masters, G., Ma, Z. & Pasyanos, M. Update on CRUST1.0 - a 1-degree global model of Earth’s crust. In EGU General Assembly Conference Abstracts EGU2013–2658 (EGU, 2013). ; Schweitzer, J. HYPOSAT – an enhanced routine to locate seismic events. Pure Appl. Geophys. 158, 277–289 (2001). (PMID: 10.1007/PL00001160) ; Hutton, L. K. & Boore, D. M. The M L scale in Southern California. Bull. Seismol. Soc. Am. 77, 2074–2094 (1987). (PMID: 10.1785/BSSA0770062074) ; Revelle, D. O. Historical detection of atmospheric impacts by large bolides using acoustic-gravity waves. Ann. N. Y. Acad. Sci. 822, 284–302 (1997). (PMID: 10.1111/j.1749-6632.1997.tb48347.x) ; Golden, P. Negraru, P. & Howard, J. Infrasound Studies for Yield Estimation of the Explosions Technical Report AFRL-RV-PS-TR-2012-0084 (Defense Technical Information Center, 2012). ; Ichihara, M., Takeo, M., Yokoo, A., Oikawa, J. & Ohminato, T. Monitoring volcanic activity using correlation patterns between infrasound and ground motion. Geophys. Res. Lett. 39, L04304 (2012). (PMID: 10.1029/2011GL050542)
  • Entry Date(s): Date Created: 20230830 Date Completed: 20230929 Latest Revision: 20231003
  • Update Code: 20240514
  • PubMed Central ID: PMC10533404

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -