Zum Hauptinhalt springen

The Impact of Russia-Ukraine geopolitical conflict on the air quality and toxicological properties of ambient PM <subscript>2.5</subscript> in Milan, Italy.

Aghaei, Y ; Badami, MM ; et al.
In: Scientific reports, Jg. 14 (2024-03-12), Heft 1, S. 5996
Online academicJournal

Titel:
The Impact of Russia-Ukraine geopolitical conflict on the air quality and toxicological properties of ambient PM <subscript>2.5</subscript> in Milan, Italy.
Autor/in / Beteiligte Person: Aghaei, Y ; Badami, MM ; Tohidi, R ; Subramanian, PSG ; Boffi, R ; Borgini, A ; De Marco, C ; Contiero, P ; Ruprecht, AA ; Verma, V ; Chatila, T ; Sioutas, C
Link:
Zeitschrift: Scientific reports, Jg. 14 (2024-03-12), Heft 1, S. 5996
Veröffentlichung: London : Nature Publishing Group, copyright 2011-, 2024
Medientyp: academicJournal
ISSN: 2045-2322 (electronic)
DOI: 10.1038/s41598-024-55292-2
Schlagwort:
  • Ukraine
  • Environmental Monitoring
  • Particulate Matter analysis
  • Italy
  • Seasons
  • Air Pollutants analysis
  • Air Pollution analysis
  • Polycyclic Aromatic Hydrocarbons analysis
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Sci Rep] 2024 Mar 12; Vol. 14 (1), pp. 5996. <i>Date of Electronic Publication: </i>2024 Mar 12.
  • MeSH Terms: Air Pollutants* / analysis ; Air Pollution* / analysis ; Polycyclic Aromatic Hydrocarbons* / analysis ; Ukraine ; Environmental Monitoring ; Particulate Matter / analysis ; Italy ; Seasons
  • References: Khudaykulova, M., Yuanqiong, H. & Khudaykulov, A. Economic Consequences and Implications of the Ukraine-Russia War. Int. J. Manag. Sci. Bus. Admin. 8, 44–52 (2022). ; Borowski, P. F. Mitigating climate change and the development of green energy versus a return to fossil fuels due to the energy crisis in 2022. Energies 15, 9289 (2022). (PMID: 10.3390/en15249289) ; Pereira, P., Bašić, F., Bogunovic, I. & Barcelo, D. Russian-Ukrainian war impacts the total environment. Sci. Total Environ. 837, 155865 (2022). (PMID: 10.1016/j.scitotenv.2022.15586535569661) ; Kuzemko, C., Blondeel, M., Dupont, C. & Brisbois, M. C. Russia’s war on Ukraine, European energy policy responses & implications for sustainable transformations. Energy Res. Soc. Sci. 93, 102842 (2022). (PMID: 10.1016/j.erss.2022.102842) ; Russia’s War on Ukraine – Topics - IEA. https://www.iea.org/topics/russias-war-on-ukraine . ; Mbah, R. E. & Wasum, D. F. Russian-Ukraine 2022 War: A review of the economic impact of Russian-Ukraine crisis on the USA, UK, Canada and Europe. Adv. Soc. Sci. Res. J. 9, 144–153 (2022). ; Liadze, I., Macchiarelli, C., Mortimer-Lee, P. & Sanchez Juanino, P. Economic costs of the Russia-Ukraine war. World Econ. 46, 874–886 (2023). (PMID: 10.1111/twec.13336) ; Database - Eurostat. https://ec.europa.eu/eurostat/web/main/data/database . ; Europe – Countries & Regions - IEA. https://www.iea.org/regions/europe . ; Popp, J., Kovács, S., Oláh, J., Divéki, Z. & Balázs, E. Bioeconomy: Biomass and biomass-based energy supply and demand. N. Biotechnol. 60, 76–84 (2021). (PMID: 10.1016/j.nbt.2020.10.00433039697) ; Home | Global Agricultural Information Network. https://gain.fas.usda.gov/#/home . ; Daellenbach, K. R. et al. Organic aerosol sources in the Milan metropolitan area – Receptor modelling based on field observations and air quality modelling. Atmos. Environ. 307, 119799 (2023). (PMID: 10.1016/j.atmosenv.2023.119799) ; Brege, M. et al. Molecular insights on aging and aqueous-phase processing from ambient biomass burning emissions-influenced Po Valley fog and aerosol. Atmos. Chem. Phys. 18, 13197–13214 (2018). (PMID: 10.5194/acp-18-13197-2018) ; Ricciardelli, I. et al. A three-year investigation of daily PM 2.5 main chemical components in four sites: The routine measurement program of the Supersito Project (Po Valley, Italy). Atmos. Environ. 152, 418–430 (2017). (PMID: 10.1016/j.atmosenv.2016.12.052) ; Ministero dell’Economia e delle Finanze - Home Page. https://www.mef.gov.it/ . ; Pietrogrande, M. C., Demaria, G., Colombi, C., Cuccia, E. & Dal Santo, U. Seasonal and Spatial Variations of PM10 and PM 2.5 Oxidative Potential in Five Urban and Rural Sites across Lombardia Region, Italy. Int. J. Environ. Res. Public Health 19, 7778 (2022). (PMID: 10.3390/ijerph19137778358054349265313) ; Lonati, G., Giugliano, M. & Ozgen, S. Primary and secondary components of PM 2.5 in Milan (Italy). Environ. Int. 34, 665–670 (2008). (PMID: 10.1016/j.envint.2007.12.00918207243) ; Sirignano, C. et al. High contribution of biomass combustion to PM 2.5 in the City Centre of Naples (Italy). Atmosphere 10, 451 (2019). (PMID: 10.3390/atmos10080451) ; Willers, S. M. et al. Fine and coarse particulate air pollution in relation to respiratory health in Sweden. Eur. Respir. J. 42, 924–934 (2013). (PMID: 10.1183/09031936.0008821223314898) ; Xing, Y. F., Xu, Y. H., Shi, M. H. & Lian, Y. X. The impact of PM 2.5 on the human respiratory system. J. Thorac. Dis. 8, E69–E74 (2016). (PMID: 269042554740125) ; Valavanidis, A., Fiotakis, K. & Vlachogianni, T. Airborne particulate matter and human health: Toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 26, 339–362 (2008). (PMID: 10.1080/1059050080249453819034792) ; Loomis, D. et al. The carcinogenicity of outdoor air pollution. Lancet Oncol. 14, 1262–1263 (2013). (PMID: 10.1016/S1470-2045(13)70487-X25035875) ; Volume 109: Outdoor Air Pollution – IARC Monographs on the Identification of Carcinogenic Hazards to Humans. https://monographs.iarc.who.int/news-events/volume-109-outdoor-air-pollution/ (2013). ; Raaschou-Nielsen, O. et al. Air pollution and lung cancer incidence in 17 European cohorts: Prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol. 14, 813–822 (2013). (PMID: 10.1016/S1470-2045(13)70279-123849838) ; Gharibvand, L. et al. The association between ambient fine particulate air pollution and lung cancer incidence: Results from the AHSMOG-2 study. Environ. Health Perspect. 125, 378–384 (2017). (PMID: 10.1289/EHP12427519054) ; Hvidtfeldt, U. A. et al. Long-term low-level ambient air pollution exposure and risk of lung cancer – A pooled analysis of 7 European cohorts. Environ. Int. 146, 106249 (2021). (PMID: 10.1016/j.envint.2020.10624933197787) ; Boldo, E. et al. Health impact assessment of a reduction in ambient PM 2.5 levels in Spain. Environ. Int. 37, 342–348 (2011). (PMID: 10.1016/j.envint.2010.10.00421056471) ; Lu, F. et al. Systematic review and meta-analysis of the adverse health effects of ambient PM 2.5 and PM10 pollution in the Chinese population. Environ. Res. 136, 196–204 (2015). (PMID: 10.1016/j.envres.2014.06.02925460637) ; Jedynska, A. Spatial variations and development of land use regression models of PAH, EC/OC, levoglucosan and oxidative potential of PM 2.5 in European study areas. (2016). ; Pirhadi, M., Mousavi, A., Taghvaee, S., Shafer, M. M. & Sioutas, C. Semi-volatile components of PM 2.5 in an urban environment: Volatility profiles and associated oxidative potential. Atmos. Environ. 223, 117197 (2020). (PMID: 10.1016/j.atmosenv.2019.117197) ; Akhtar, U. S. et al. Cytotoxic and proinflammatory effects of ambient and source-related particulate matter (PM) in relation to the production of reactive oxygen species (ROS) and cytokine adsorption by particles. Inhal. Toxicol. 22, 37–47 (2010). (PMID: 10.3109/08958378.2010.51837721142797) ; Li, W. et al. Tracers from biomass burning emissions and identification of biomass burning. Atmosphere 12, 1401 (2021). (PMID: 10.3390/atmos12111401) ; de Oliveira Alves, N. et al. Biomass burning in the Amazon region: Aerosol source apportionment and associated health risk assessment. Atmos. Environ. 120, 277–285 (2015). (PMID: 10.1016/j.atmosenv.2015.08.059) ; Saarikoski, S. et al. Chemical characterization of springtime submicrometer aerosol in Po Valley Italy. Atmos. Chem. Phys. 12, 8401–8421 (2012). (PMID: 10.5194/acp-12-8401-2012) ; Kelly, F. J. & Fussell, J. C. Global nature of airborne particle toxicity and health effects: A focus on megacities, wildfires, dust storms and residential biomass burning. Toxicol. Res. (Camb) 9, 331–345 (2020). (PMID: 10.1093/toxres/tfaa04432905302) ; Samburova, V. et al. Polycyclic aromatic hydrocarbons in biomass-burning emissions and their contribution to light absorption and aerosol toxicity. Sci. Total Environ. 568, 391–401 (2016). (PMID: 10.1016/j.scitotenv.2016.06.02627304373) ; Sarigiannis, D. A., Karakitsios, S. P., Zikopoulos, D., Nikolaki, S. & Kermenidou, M. Lung cancer risk from PAHs emitted from biomass combustion. Environ. Res. 137, 147–156 (2015). (PMID: 10.1016/j.envres.2014.12.00925543545) ; Conticini, E., Frediani, B. & Caro, D. Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy?. Environ. Pollut. 261, 114465 (2020). (PMID: 10.1016/j.envpol.2020.114465322689457128509) ; Putaud, J. P., Van Dingenen, R. & Raes, F. Submicron aerosol mass balance at urban and semirural sites in the Milan area (Italy). J. Geophys. Res. Atmos. 107, LOP-11 (2002). (PMID: 10.1029/2000JD000111) ; Caserini, S., Giani, P., Cacciamani, C., Ozgen, S. & Lonati, G. Influence of climate change on the frequency of daytime temperature inversions and stagnation events in the Po Valley: Historical trend and future projections. Atmos. Res. 184, 15–23 (2017). (PMID: 10.1016/j.atmosres.2016.09.018) ; Pernigotti, D., Georgieva, E., Thunis, P. & Bessagnet, B. Impact of meteorology on air quality modeling over the Po valley in northern Italy. Atmos. Environ. 51, 303–310 (2012). (PMID: 10.1016/j.atmosenv.2011.12.059) ; Tositti, L. et al. Source apportionment of particulate matter in a large city of southeastern Po Valley (Bologna, Italy). Environ. Sci. Pollut. Res. 21, 872–890 (2014). (PMID: 10.1007/s11356-013-1911-7) ; Daher, N. et al. Characterization, sources and redox activity of fine and coarse particulate matter in Milan Italy. Atmos. Environ. 49, 130–141 (2012). (PMID: 10.1016/j.atmosenv.2011.12.011) ; Perrone, M. G. et al. Sources of high PM 2.5 concentrations in Milan Northern Italy: Molecular marker data and CMB modelling. Sci. Total Environ. 414, 343–355 (2012). (PMID: 10.1016/j.scitotenv.2011.11.02622155277) ; Belis, C. A. et al. Sources for PM air pollution in the Po Plain, Italy: I. Critical comparison of methods for estimating biomass burning contributions to benzo(a)pyrene. Atmos. Environ. 45, 7266–7275 (2011). (PMID: 10.1016/j.atmosenv.2011.08.061) ; Vecchi, R., Marcazzan, G., Valli, G., Ceriani, M. & Antoniazzi, C. The role of atmospheric dispersion in the seasonal variation of PM1 and PM 2.5 concentration and composition in the urban area of Milan (Italy). Atmos. Environ. 38, 4437–4446 (2004). (PMID: 10.1016/j.atmosenv.2004.05.029) ; Ramanathan, V. & Carmichael, G. Global and regional climate changes due to black carbon. Nat. Geosci. 1, 221–227 (2008). (PMID: 10.1038/ngeo156) ; Boucher, O. & Reddy, M. S. Climate trade-off between black carbon and carbon dioxide emissions. Energy Policy 36, 193–200 (2008). (PMID: 10.1016/j.enpol.2007.08.039) ; Marcazzan, G. M., Vaccaro, S., Valli, G. & Vecchi, R. Characterisation of PM10 and PM 2.5 particulate matter in the ambient air of Milan (Italy). Atmos. Environ. 35, 4639–4650 (2001). (PMID: 10.1016/S1352-2310(01)00124-8) ; Decesari, S. et al. Enhanced toxicity of aerosol in fog conditions in the Po Valley Italy. Atmos. Chem. Phys. 17, 7721–7731 (2017). (PMID: 10.5194/acp-17-7721-2017) ; Misra, C., Singh, M., Shen, S., Sioutas, C. & Hall, P. M. Development and evaluation of a personal cascade impactor sampler (PCIS). J. Aerosol Sci. 33, 1027–1047 (2002). (PMID: 10.1016/S0021-8502(02)00055-1) ; Singh, M., Misra, C. & Sioutas, C. Field evaluation of a personal cascade impactor sampler (PCIS). Atmos. Environ. 37, 4781–4793 (2003). (PMID: 10.1016/j.atmosenv.2003.08.013) ; Chow, J. C. et al. The IMPROVE_A temperature protocol for thermal/optical carbon analysis: Maintaining consistency with a long-term database. J. Air Waste Manag. Assoc. 57, 1014–1023 (2007). (PMID: 10.3155/1047-3289.57.9.101417912920) ; Schauer, J. J., Kleeman, M. J., Cass, G. R. & Simoneit, B. R. T. Measurement of emissions from air pollution sources. 2. C1 through C30 organic compounds from medium duty diesel trucks. Environ. Sci. Technol. 33, 1578–1587 (1999). (PMID: 10.1021/es980081n) ; Herner, J. D., Green, P. G. & Kleeman, M. J. Measuring the trace elemental composition of size-resolved airborne particles. Environ. Sci. Technol. 40, 1925–1933 (2006). (PMID: 10.1021/es052315q16570617) ; Lough, G. C. et al. Emissions of metals associated with motor vehicle roadways. Environ. Sci. Technol. 39, 826–836 (2005). (PMID: 10.1021/es048715f15757346) ; Turpin, B. J. & Lim, H.-J. Species contributions to PM 2.5 mass concentrations: Revisiting common assumptions for estimating organic mass. Aerosol Sci. Technol. 35, 602–610 (2001). (PMID: 10.1080/02786820119445) ; Weber, S. et al. Source apportionment of atmospheric PM10 oxidative potential: Synthesis of 15 year-round urban datasets in France. Atmos. Chem. Phys. 21, 11353–11378 (2021). (PMID: 10.5194/acp-21-11353-2021) ; Visentin, M., Pagnoni, A., Sarti, E. & Pietrogrande, M. C. Urban PM 2.5 oxidative potential: Importance of chemical species and comparison of two spectrophotometric cell-free assays. Environ. Pollut. 219, 72–79 (2016). (PMID: 10.1016/j.envpol.2016.09.04727661730) ; Kurihara, K. et al. Contribution of physical and chemical properties to dithiothreitol-measured oxidative potentials of atmospheric aerosol particles at urban and rural sites in Japan. Atmosphere (Basel) 13, 319 (2022). (PMID: 10.3390/atmos13020319) ; Verma, V. et al. Physicochemical and oxidative characteristics of semi-volatile components of quasi-ultrafine particles in an urban atmosphere. Atmos. Environ. 45, 1025–1033 (2011). (PMID: 10.1016/j.atmosenv.2010.10.044) ; Cho, A. K., Sioutas, C., Miguel, A. H., Kumagai, Y. & Froines, J. R. Redox activity of airborne particulate matter (PM) at different sites in the Los Angeles Basin. Environ. Res. 99, 40–47 (2005). (PMID: 10.1016/j.envres.2005.01.00316053926) ; Verma, V. et al. Organic aerosols associated with the generation of reactive oxygen species (ROS) by water-soluble PM 2.5 . Environ. Sci. Technol. 49, 4646–4656 (2015). (PMID: 10.1021/es505577w25748105) ; Verma, V. et al. Redox activity of urban quasi-ultrafine particles from primary and secondary sources. Atmos. Environ. 43, 6360–6368 (2009). (PMID: 10.1016/j.atmosenv.2009.09.019) ; Charrier, J. G. & Anastasio, C. On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: Evidence for the importance of soluble \newline transition metals. Atmos. Chem. Phys. 12, 9321–9333 (2012). (PMID: 10.5194/acp-12-9321-2012) ; Kumagai, Y. et al. Oxidation of proximal protein sulfhydryls by phenanthraquinone, a component of diesel exhaust particles. Chem. Res. Toxicol. 15, 483–489 (2002). (PMID: 10.1021/tx010099311952333) ; Pietrogrande, M. C., Colombi, C., Cuccia, E., Dal Santo, U. & Romanato, L. The impact of COVID-19 lockdown strategies on oxidative properties of ambient PM10 in the Metropolitan Area of Milan Italy. Environments - MDPI 9, 145 (2022). (PMID: 10.3390/environments9110145) ; Grezzi, G., Ayuso, R. A., De Vivo, B., Lima, A. & Albanese, S. Lead isotopes in soils and groundwaters as tracers of the impact of human activities on the surface environment: The Domizio-Flegreo Littoral (Italy) case study. J. Geochem. Explor. 109, 51–58 (2011). (PMID: 10.1016/j.gexplo.2010.09.012) ; Chung, J. Y., Yu, S. D. & Hong, Y. S. Environmental source of arsenic exposure. J. Prevent. Med. Public Health 47(5), 253 (2014). (PMID: 10.3961/jpmph.14.036) ; Hagelstein, K. The environmental management of selenium in aluminum processing. JOM 55, 51–54 (2003). (PMID: 10.1007/s11837-003-0106-y) ; Harrison, R. M., Jones, A. M., Gietl, J., Yin, J. & Green, D. C. Estimation of the contributions of brake dust, tire wear, and resuspension to nonexhaust traffic particles derived from atmospheric measurements. Environ. Sci. Technol. 46, 6523–6529 (2012). (PMID: 10.1021/es300894r22642836) ; Taghvaee, S. et al. Source apportionment of ambient PM 2.5 in two locations in central Tehran using the Positive Matrix Factorization (PMF) model. Sci. Total Environ. 628–629, 672–686 (2018). (PMID: 10.1016/j.scitotenv.2018.02.09629455128) ; Tian, W. H. The effect of free adult preventive care services on subsequent utilization of inpatient services in Taiwan. Int. J. Health Serv. 46, 547–565 (2016). (PMID: 10.1177/002073141665466127287671) ; Mousavi, A., Sowlat, M. H. & Sioutas, C. Diurnal and seasonal trends and source apportionment of redox-active metals in Los Angeles using a novel online metal monitor and Positive Matrix Factorization (PMF). Atmos. Environ. 174, 15–24 (2018). (PMID: 10.1016/j.atmosenv.2017.11.034) ; Yu, J. et al. Potassium: A tracer for biomass burning in Beijing?. Aerosol Air Qual. Res. 18, 2447–2459 (2018). (PMID: 10.4209/aaqr.2017.11.0536) ; Fraser, M. P. & Lakshmanan, K. Using Levoglucosan as a molecular marker for the long-range transport of biomass combustion aerosols. Environ. Sci. Technol. 34, 4560–4564 (2000). (PMID: 10.1021/es991229l) ; Alves, C. A. et al. Elements and polycyclic aromatic hydrocarbons in exhaust particles emitted by light-duty vehicles. Environ. Sci. Pollut. Res. 22, 11526–11542 (2015). (PMID: 10.1007/s11356-015-4394-x) ; Karavalakis, G., Boutsika, V., Stournas, S. & Bakeas, E. Biodiesel emissions profile in modern diesel vehicles. Part 2: Effect of biodiesel origin on carbonyl, PAH, nitro-PAH and oxy-PAH emissions. Sci. Total Environ. 409, 738–747 (2011). (PMID: 10.1016/j.scitotenv.2010.11.01021122895) ; Masclet, P., Cachier, H., Liousse, C. & Wortham, H. Emissions of Polycyclic aromatic hydrocarbons by savanna fires. J. Atmos. Chem. 22, 41–54 (1995). (PMID: 10.1007/BF00708180) ; Gilardoni, S. et al. Fog scavenging of organic and inorganic aerosol in the Po valley. Atmos. Chem. Phys. 14, 6967–6981 (2014). (PMID: 10.5194/acp-14-6967-2014) ; Perrino, C. et al. Seasonal variations in the chemical composition of particulate matter: A case study in the Po Valley. Part I: Macro-components and mass closure. Environ. Sci. Pollut. Res. 21, 3999–4009 (2014). (PMID: 10.1007/s11356-013-2067-1) ; Altuwayjiri, A. et al. The impact of stay-home policies during Coronavirus-19 pandemic on the chemical and toxicological characteristics of ambient PM 2.5 in the metropolitan area of Milan Italy. Sci. Total Environ. 758, 143582 (2021). (PMID: 10.1016/j.scitotenv.2020.14358233213922) ; Liu, D. et al. Concentration, source identification, and exposure risk assessment of PM 2.5 -bound parent PAHs and nitro-PAHs in atmosphere from typical Chinese cities. Sci Rep 7, 10398 (2017). (PMID: 10.1038/s41598-017-10623-4288711075583288) ; Křůmal, K., MikuŠka, P. & Večeřa, Z. Polycyclic aromatic hydrocarbons and hopanes in PM1 aerosols in urban areas. Atmos. Environ. 67, 27–37 (2013). (PMID: 10.1016/j.atmosenv.2012.10.033) ; Pepe, N. et al. Enhanced CAMx source apportionment analysis at an urban receptor in Milan based on source categories and emission regions. Atmos. Environ. X 2, 100020 (2019). ; Afzal, A., Cioffi, N., Sabbatini, L. & Torsi, L. NO x sensors based on semiconducting metal oxide nanostructures: Progress and perspectives. Sens. Actuators B Chem. 171–172, 25–42 (2012). (PMID: 10.1016/j.snb.2012.05.026) ; Whaley, C. H., Galarneau, E., Makar, P. A., Moran, M. D. & Zhang, J. How much does traffic contribute to benzene and polycyclic aromatic hydrocarbon air pollution? Results from a high-resolution North American air quality model centred on Toronto Canada. Atmos. Chem. Phys. 20, 2911–2925 (2020). (PMID: 10.5194/acp-20-2911-2020) ; Longhin, E. M., Mantecca, P. & Gualtieri, M. Fifteen years of airborne particulates in vitro toxicology in milano: Lessons and perspectives learned. Int. J. Mol. Sci. 21, 2489 (2020). (PMID: 10.3390/ijms21072489322601647177378) ; Pietrogrande, M. C., Russo, M. & Zagatti, E. Review of PM oxidative potential measured with acellular assays in urban and rural sites across Italy. Atmosphere (Basel) 10, 626 (2019). (PMID: 10.3390/atmos10100626) ; Perrone, M. G. et al. Seasonal variations in chemical composition and in vitro biological effects of fine PM from Milan. Chemosphere 78, 1368–1377 (2010). (PMID: 10.1016/j.chemosphere.2009.12.07120123145) ; Simonetti, G., Conte, E., Perrino, C. & Canepari, S. Oxidative potential of size-segregated PM in an urban and an industrial area of Italy. Atmos. Environ. 187, 292–300 (2018). (PMID: 10.1016/j.atmosenv.2018.05.051) ; Urch, B. et al. Acute blood pressure responses in healthy adults during controlled air pollution exposures. Environ. Health Perspect. 113, 1052 (2005). (PMID: 10.1289/ehp.7785160790781280348) ; Delfino, R. J. et al. Air pollution exposures and circulating biomarkers of effect in a susceptible population: Clues to potential causal component mixtures and mechanisms. Environ. Health Perspect. 117, 1232–1238 (2009). (PMID: 10.1289/ehp.0800194196724022721866) ; Delfino, R. J. et al. Traffic-related air pollution and blood pressure in elderly subjects with coronary artery disease. Epidemiology 21, 396–404 (2010). (PMID: 10.1097/EDE.0b013e3181d5e19b20335815) ; Kim, S. Y. et al. The temporal lag structure of short-term associations of fine particulate matter chemical constituents and cardiovascular and respiratory hospitalizations. Environ. Health Perspect. 120, 1094 (2012). (PMID: 10.1289/ehp.1104721226098993440088) ; Delfino, R. J. et al. Associations of primary and secondary organic aerosols with airway and systemic inflammation in an elderly panel cohort. Epidemiology 21, 892–902 (2010). (PMID: 10.1097/EDE.0b013e3181f20e6c20811287)
  • Grant Information: R01 AI065617 United States AI NIAID NIH HHS; 2R01AI065617-22 United States NH NIH HHS
  • Substance Nomenclature: 0 (Air Pollutants) ; 0 (Particulate Matter) ; 0 (Polycyclic Aromatic Hydrocarbons)
  • Entry Date(s): Date Created: 20240313 Date Completed: 20240314 Latest Revision: 20240422
  • Update Code: 20240422
  • PubMed Central ID: PMC10933473

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -